menu
  • 1.800.734.5351
  • Schedule a Pick Up - 1.800.734.5351 Ext 5

4 Key Trends to Watch in Smart Manufacturing and Supply Chain

smart manufacturing

Industrial IoT and big data are converging to enable demand-driven 'smart supply chains.' The advancements in 3D printing and 'Additive Manufacturing,' coupled with supply chain efficiencies, could make distributed manufacturing a reality, ushering in the era of smart manufacturing.

The Continual Coverage and Now Reality of Smart Manufacturing with 3D Printing

I remember reading an MIT paper on manufacturing technology trends a couple of years ago. It had a fascinating mention of "Additive Manufacturing" (AM) and how it could be a game changer. One of the biggest challenges facing automotive, aerospace and defense manufacturers is the limited shapes a part can be cut, molded or welded in. On the other hand, a digitally 3D-printed part can be molded into an infinite number of shapes. According to industry standard ASTM F2792-10, AM is defined as, "The process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing technologies."

key trends in smart manufacturing

The promise of AM is the use of less material, lightweight alloys and to provide faster cycle time due to rapid prototyping. The AM processes would produce less scrap, address complex geometries and improve strength-to-weight ratios. AM has the potential to move manufacturing from mass production in large factories with dedicated machining and tooling lines to an era of mass customization and distributed smart manufacturing.

It would be interesting to watch how AM matures in the years to come because it is still in early stages. AM cost centers are currently more expensive than traditional CNC machining, and the production rate is slower once you move past the rapid prototyping phase. The powdered material availability and suitability in a variety of industrial applications is still evolving. The mechanical properties of the parts produced with AM have to be proven. It is especially important in the industries such as automotive, aviation and energy, where failure of a part has direct safety implications.

Smart Manufacturing: Will it Take Hold in the Coming Years....the Internet of Things Might Make it So

The next key trend I see coming is a more prominent role of Internet of Things (IoT) in extended supply chains. IoT can help companies provide improved predictability of customer demand with real-time visibility of product and service demand signals. In a supply chain, strategic deployment of IoT technologies can improve asset utilization, customer service, working capital deployment, waste reduction and sustainability. Real time communication between machines, factories, logistic providers and suppliers provides improved visibility on the end-to-end supply chain.

IoT can address compliance, regulatory and quality reporting requirements such as parts traceability and product genealogy, emissions and country of origin. With IoT, organizations are better suited to track shipped products for warranties, returns and predictive support for maintenance.

The real premise of IoT-enabled supply chains is to delegate decision making on some of the operational aspects to smart objects and systems, based on real time analytics and machine learning algorithms.

One of my concerns is IoT security — especially on how to protect deeply embedded end-point legacy devices that have limited resources and interfacing mechanisms available.

4 trends in smart manufacturing

Smart Manufacturing will Make Supply Chains Demand Driven not Forecast Driven

This brings us to customer- and market-driven supply chains. Most companies think they do their supply chain planning based on the demand— in reality most of the time it is nothing but a disguised forecast based supply chain. To gain and sustain competitive advantage, the principles of lean manufacturing, just in time and inventory control are simply not enough. Organizations would need to be not only aligned with true customer demand but also shape the demand using technology and analytical tools.

Supply chains need to move away from being forecast driven to become demand driven. Forecasts by their very nature are inaccurate. You cannot simply go by historic sales patterns, throw in current market conditions and seasonality, and hope for the best. One needs to shape the demand, the goal needs to be maximization of the profit, not simply reduction of cost or maximization of revenue. The essence of demand shaping is knowing about your most profitable customers and products, and protecting and promoting them.

All customers are not created equal. The data science algorithms can help in customer segmentation and clustering. They can tell which customers are the lowest cost to serve and which are likely to buy the highest profit products. The current crop of big data and analytics tools provide a way to integrate data from sales, marketing, action of customers, product reviews, competitor information, warranty data and supplier status in near real time to make demand-driven supply chains a reality.

Big data can help in capturing structured and unstructured data from sources internal, as well as external, to the enterprise. Big data now enables "postponement"— a practice that allows manufactures to delay building final finished products until the very last possible moment, to be truly sensitive to customer demand.

Smart Manufacturing Driving Reshoring?

This leads us into our final trend of distributed smart manufacturing. There have been opposing trends of strategic outsourcing of manufacturing versus bringing more and more manufacturing in-house. The first approach provides flexibility, frees up capital resources, lowers cost and speeds up product development. The inherent risk with the outsourcing approach is the potential to lose intellectual capital, lack of control on the process and quality, and the potential of brand dilution.

Strategically, smart manufacturing is the future of manufacturing. In the next few years, Industry 4.0 will bring advances in AM, IoT enabled connected factories, manufacturers and distributors, and end consumers will make distributed manufacturing a reality.

Source CIO.com.

Other Posts You Might Like:

Adam Robinson
Adam Robinson oversees the overall marketing strategy for Cerasis including website development, social media and content marketing, trade show marketing, email campaigns, and webinar marketing. Mr. Robinson works with the business development department to create messaging that attracts the right decision makers, gaining inbound leads and increasing brand awareness all while shortening sales cycles, the time it takes to gain sales appointments and set proper sales and execution expectations.
Adam Robinson
Adam Robinson
  • Pingback: 4 Key Trends of Smart Manufacturing in Supply C...()

  • BR Deshpande

    Not sure i understand how your version of “demand driven” supply chain is any different from what is currently being practiced. If i understand correctly you are simply advocating using more tools and more data to improve predictions. The underlying principle is the same: predict who is going to buy what amounts of my stuff so that i can make it.

  • Wouldn’t the two blue sections have “using Big Data” too?


WEBINAR: The Essential Guide to Freight Claims ManagementRegister to Attend

Join 20,000 Plus Subscribers!

To subscribe to our blog, enter your email address below and stay on top of things.

 

Subscribe!

Send this to friend